Two neighboring retinal ganglion cells receive input over the direct path from two overlapping groups of receptors. The areas of retina occupied by these receptors make up their receptive-field centers, shown face on by the large overlapping circles. You can see why by glancing at the simplified circuit in the diagram to the left: the cell colored pink and the one colored blue receive inputs from the overlapping regions, shown in cross section, of the appropriate colors. Because of divergence, in which one cell makes synapses with many others at each stage, one receptor can influence hundreds or thousands of ganglion cells. It will contribute to the receptive- field centers of some cells and to the surrounds of others. It will excite some cells, through their centers if they are on- center cells and through their surrounds if they are off-center cells; and it will similarly inhibit others, through their centers or surrounds. Thus a small spot shining on the retina can stir up a lot of activity, in many cells. DIMENSIONS OF RECEPTIVE FIELDS My third comment is an attempt to relate these events in the retina to everyday vision in the outside world. Obviously our vision completely depends on information the brain receives from the eyes; all this information is conveyed to the brain by the axons of retinal ganglion cells. The finer the detail conveyed by each of these fibers, the crisper will be our image of the world. This fineness of detail is best measured not by the overall size of receptive fields, but by the size of the field centers.